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Abstract—As researchers continue to architect massive-
scale systems, it is becoming clear that these systems will
utilize a significant amount of shared hardware between
processing units. Systems such as the IBM Blue Gene
(BG) and Cray XT have started utilizing flat (i.e., scalable)
networks, which differ from switched fabrics in that they
use a 3D torus or similar topology. This allows the network
to grow only linearly with system scale, instead of the super
linear growth needed for full fat-tree switched topologies,
but at the cost of increased network sharing between
processing nodes. While in many cases a full fat-tree is
an over estimate of the needed bisectional bandwidth, it is
not clear whether the other extreme of a flat topology is
sufficient to move data around the network efficiently. In
this paper, we study the network behavior of the IBM
BG/P using several application communication kernels,
and we monitor network congestion behavior based on
detailed hardware counters. Our studies scale from small
systems to 8 racks (32,768 cores) of BG/P and provide
insights into the network communication characteristics of
the system.As researchers continue to architect massive-
scale systems, it is becoming clear that these systems will
utilize a significant amount of shared hardware between
processing units. Systems such as the IBM Blue Gene
(BG) and Cray XT have started utilizing flat (i.e., scalable)
networks, which differ from switched fabrics in that they
use a 3D torus or similar topology. This allows the network
to grow only linearly with system scale, instead of the super
linear growth needed for full fat-tree switched topologies,
but at the cost of increased network sharing between
processing nodes. While in many cases a full fat-tree is
an over estimate of the needed bisectional bandwidth, it
is not clear whether the other extreme of a flat topology
is sufficient to move data around the network efficiently.
In this paper, we study the network behavior of the IBM
BG/P using several application communication kernels, and
we monitor network congestion behavior based on detailed
hardware counters. Our studies scale from small systems
to 8 racks (32,768 cores) of BG/P and provide insights into
the network communication characteristics of the system.

I. Introduction
Large-scale systems with hundreds of thousands of cores

are available today. As we look forward to even larger

systems, it is becoming clear that these systems will

utilize considerable shared hardware, including shared

caches, shared memory and memory management de-

vices, and shared network infrastructure. Specifically,

with respect to the shared network infrastructure, sys-

tems such as the IBM Blue Gene [1], [2] and Cray

XT [3], [4] have started utilizing flat (i.e. scalable)

networks which differ from switched fabrics in that

they use a 3D torus or similar topology. The primary

benefit of using such flat networks is that the number

of network components grows only linearly with system

size instead of the super linear growth needed for full

fat-tree switched topologies; hence the network cost and

failure rate do not rapidly outgrow the rest of the system.

Although flat networks have benefits compared to

switched fabrics, they come at the cost of increased

network sharing between processing nodes. For example,

in a 3D torus, each node has six neighbors that it directly

connects to. To reach other nodes, it has to make multiple

hops. Therefore, unless each node communicates with

only its physically nearest neighbors, it will be forced

to share network links with other communication. Simi-

larly, for systems such as the IBM Blue Gene/P (BG/P)

that share a collective network across all nodes, a subset

of the nodes using the collective network might mean

that another completely independent subset of nodes

cannot use it at the same time.

While in many cases a full fat-tree is an over estimate of

the needed bisectional bandwidth, it is not clear whether

the other extreme of a flat topology is sufficient to move

data around the network efficiently. A full fat-tree topol-

ogy guarantees that there exists a full set of non blocking

paths between all pairs of nodes in the system. Although,

this is not equivalent to saying that all communication

in a fat-tree topology is fully nonblocking, the additional

network components available in the system do help

networks avoid congestion issues. A flat network, on the

other hand, utilizes significantly fewer network compo-

nents, especially for large systems. What does this mean

for the data that needs to be communicated? If we reduce

the number of network components, the data has to

share the available network links, which can potentially

lead to more network congestion. At the same time

most scalable applications do not communicate with all

processes in the system; they rely mostly on clique-based

communication which refers to the ability of applications

to form small sub-groups of processes with a majority of

the communication (at least in the performance-critical

path) happening within these groups. Nearest neighbor

(e.g., PDE solvers, molecular dynamics simulations) and

Cartesian grids (e.g., FFT solvers) are popular examples

of such communication [5], [6], [7]. Thus, in such



environments would the reduced number of network

links in a flat network topology really increase network

congestion?

In light of these two arguments, it is important for us

to understand how such flat networks behave for dif-

ferent application communication patterns. Specifically,

are such flat networks sufficient for most common com-

munication patterns? Or are they completely unscalable?

How does network congestion behavior vary as we scale

up the system size?

To answer these questions, we present a detailed analysis

of the network congestion on the IBM BG/P system

using various application communication kernels. These

include global communication between all processes

and clique-based communication mechanisms such as

cartesian communication and logical nearest neighbor

communication with varying number of dimensions. Our

experiments, which use the Message Passing Interface

(MPI) [8] as the underlying communication mechanism,

study different communication patterns within each com-

munication clique, such as all-to-all, broadcast, and all-

gather. Further, for all these cases, we used detailed hard-

ware profiling counters to study network congestion and

understand the impact of shared network hardware on

such communication patterns. Our experiments, which

scale from small systems to up to 8 racks (32,768 cores)

of one of the largest BG/P systems in the world (at

Argonne National Laboratory), provide insight into the

network communication characteristics of the system.

The remainder of the paper is organized as follows.

We present a brief overview of the IBM BG/P network

infrastructure in Section II. Some of our prior work that

serves as a motivation for the study in this paper is

presented in Section III. Detailed experimental results

and the corresponding analysis are presented in Sec-

tion IV. Other literature related to our work is presented

in Section V. We draw conclusions in Section VI.

II. Overview of the BG/P Network
BG/P is the second generation in the IBM BG family.

BG/P systems comprise individual racks that can be

connected together; each rack contains 1024 four-core

nodes, for a total of 4096 cores per rack. Blue Gene

systems have a hierarchical structure. Nodes are grouped

into midplanes, which contain 512 nodes in an 8 × 8 × 8

structure. Each rack contains two such midplanes. Large

Blue Gene systems are constructed in multiple rows of

racks.

As shown in Figure 1, each node on the BG/P uses a

4-core architecture, with each core having a separate L2

cache and a semi-distributed L3 cache (shared between

two cores). Each node is connected to five different

networks [9]. Two of them, 10-Gigabit Ethernet and 1-

Gigabit Ethernet with JTAG interface,1 are used for file

I/O and system management. The other three are used

for MPI communication.
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Fig. 1. BG/P Architecture [10]

3-D Torus Network: This network is used for MPI

point-to-point and multicast operations and connects all

compute nodes to form a 3-D torus (each node has six

neighbors). Each link provides a bandwidth of 425 MB/s

per direction, for a total bidirectional bandwidth of 5.1

GB/s. As shown in Figure 1, as though each node has

six bidirectional links on each node, there is only one

shared DMA engine.

Global Collective Network: This is a one-to-all network

for compute and I/O nodes used for MPI collective com-

munication (for regular collectives with small amounts

of data) and I/O services. Each node has three links to

this network (total of 5.1 GB/s bidirectional bandwidth).

Global Interrupt Network: This is an extremely scal-

able network specifically used for global barriers and

interrupts. For example, the global barrier latency of a

72K-node partition is approximately 1.3µs.

The compute cores in the nodes do not handle packets on

the torus network; the DMA engine offloads most of the

network packet injecting and receiving work, enabling

better overlap of computation and communication. How-

ever, the cores directly handle sending/receiving packets

from the collective network.

The DMA engine on the BG/P maintains a buffer region,

known as the DMA FIFO, where it stores data that has

been handed over to it by the upper layers but has not yet

1JTAG is the IEEE 1149.1 standard for system diagnosis and
management
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Fig. 2. BG/P Network Congestion: (a) Overlapping Communication Performance; (b) Hot-Spot Communication
Performance

been reliably transmitted on the network. A process can

queue data to be sent on the network by adding it to the

DMA FIFO buffer. If this FIFO buffer is full, the process

can request the hardware for an interrupt when the DMA

engine has transmitted some data, creating more space

in the FIFO. On receiving such an interrupt, the process

can refill the FIFO with more data.

III. Prior Work

In this section, we present performance measurements

from our prior work [11], which motivated the study in

this paper.

Figure 2(a) shows the point-to-point bandwidth achieved

by two flows that have an overlapping link on the BG/P.

We pick four processes on a full torus system partition

that are contiguously located along a single dimension

(say P0, P1, P2, and P3). These four processes form

two pairs, with each pair performing the bandwidth test.

P0 sends data to P3 (which takes the route P0–P1–

P2–P3) and P1 sends data to P2 (which takes a direct

one hop route, P1–P2). Thus, the link connecting P1

and P2 is shared for both communication streams. As

shown in the figure, the communication between P0 and

P3 (legend “P0-P3”), achieves the same bandwidth as

an uncongested link (legend “No overlap”) illustrating

that the link congestion has no performance impact on

this stream. However, for the communication between

P1 and P2 (legend “P1-P2”), there is a significant

performance impact. The reason for this asymmetric

performance for these two streams is related to the

congestion management mechanism of BG/P. Like most

other networks, BG/P uses a sender driven data-rate

throttling mechanism to manage network congestion.

Specifically, when the sender is trying to send data, if the

immediate link on which data needs to be transmitted is

busy, the sender throttles the sending rate. On the other

hand, for flow-through data, the sender is not directly

connected to the congested link and hence cannot “see”

that the link is busy. Thus, there is no throttling for flow-

through data causing it to achieve high-performance but

at the expense of other flows.

Figure 2(b) shows the hot-spot communication perfor-

mance, where a single “master” process performs a

latency test with a group of “worker” processes, thus

forming a communication hotspot (the graph uses a

log-log scale). This test is designed to emulate master-

worker communication models. For all message sizes,

we see an exponential increase in the hot-spot latency

with increasing system size. This is attributed to the

congestion that occurs when multiple messages arrive via

the limited number of links surrounding a single master

process. As the system size increases, more and more

messages are pushed to the same process, further in-

creasing congestion and causing significant performance

loss.

Figure 3(a) shows the performance of global all-to-

all communication. We notice that time taken for

MPI_Alltoall increases super linearly, especially for

large messages. This represents the worst-case commu-

nication behavior but gives a good indication of the

potential congestion issues a flat network might face.

Figure 3(b) shows the impact of different process map-

pings on the performance of a nearest-neighbor commu-

nication kernel, HALO [12]. Different mappings indicate

how MPI ranks are allocated. For example, XYZT in-

dicates that ranks are ordered first with respect to the

x-axis on the 3D torus, then the y-axis, and so on. The

T-axis refers to the cores within the node. As shown

in the figure, these mappings can have up to a threefold

impact for a system size of 128K processes, because how

processes are mapped to the system nodes essentially

determines the characteristics of network traffic, and
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Fig. 3. (a) Global All-to-All Communication Performance; (b) Nearest-Neighbor Communication

eventually network congestion.

IV. Experiments and Analysis

As described in Section III, increasing system sizes

have a significant impact on the system communication

performance, much of which is attributed to network

congestion. However, measuring network congestion is

not trivial. In this paper, we utilize the BG/P network

hardware counters to measure the number of times the

node has data to send but does not have network credits

to send data. While this count does not give the actual

amount of time for which the host faced congestion, a

larger count, in general, means that there is more network

congestion.

In this section, we study network congestion behavior for

three broad classes of logical communication topologies:

(a) global communication (described in Section IV-A),

(b) cartesian communication (described in Section IV-B),

and (c) nearest-neighbor communication (described in

Section IV-C). Global communication deals with single

communication operations that involve all processes in

the system, while Cartesian and nearest neighbor deal

with smaller cliques, where each process communicates

only with a subset of the processes (a more common

approach for massively scalable applications).

A. Global Communication

In this section we show the communication impact of

global communication with increasing system size.

All-to-all communication: Figure 4 utilizes

MPI_Alltoall, as a worst-case indication of

the network congestion for the system. The legend in

the graph represents the number of network stall events

noticed along all the dimensions in the 3D torus. Since

this collective relies only on the 3D torus network, the

other networks are not relevant in this case.
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Fig. 4. Global Communication (64 KB Message Size):
MPI_Alltoall

For global communication, we notice that the overall

network stall count is high even for 2048 processes,

and the increase in the stall count itself decreases with

increasing system size. This behavior is based on the

network congestion behavior described in Section II.

Specifically, the process keeps adding messages to the

DMA FIFO buffer as long as there is space to add. Once

the FIFO buffer is full (because the application is adding

messages faster than the DMA engine can send out data),

the process just requests the network for an interrupt

when there is space available in the DMA FIFO, and gets

back to its processing. As the congestion increases, the

rate at which the DMA engine can empty its FIFO drops

(since the network link is available for data transmission

fewer times). Eventually, as the network congestion hits

a critical level, as soon as the DMA FIFO advertises the

availability of N bytes in the FIFO buffer, the process

queues up data corresponding to these N bytes before

4



the DMA engine can transmit any more data. Therefore,

when the network reaches this critical congestion level,

we do not see any more increase in the network stall

counter, as illustrated in Figure 4.

This situation essentially demonstrates that all-to-all

kind of communication is fundamentally unscalable on

flat torus networks even for small system sizes (2048

processes). With systems with hundreds of thousands of

processes available today, all-to-all communication even

within smaller groups of processes can have a substantial

impact on network congestion and consequently overall

communication behavior.

All-gather communication: Figure 5 shows the network

congestion behavior of MPI_Allgather with increas-

ing system size. For large messages, MPI_Allgather

utilizes the collective network for its communication.

Thus, in this experiment, we measure the number of

times the end node has data to send but the network

is busy with other communication.
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Fig. 5. Global Communication (4 KB Message Size):
MPI_Allgather

For medium to large-sized messages, MPI_Allgather

is implemented by using multiple MPI_Bcast mes-

sages, one from each process. Since there is only one

shared collective network, however all these broad-

casts have to wait for the network to become avail-

able. Thus, with increasing system size, the number of

stalls each process sees increases as well. In Figure 5,

we see a similar trend as MPI_Alltoall even for

MPI_Allgather; that is, the overall network stall

count is high even for 2048 processes, and it stays

relatively unchanged with increasing system size. The

reason is a similar to that with MPI_Alltoall.

Broadcast communication: We have also done mea-

surements with MPI_Bcast. These do not show any

network stalls, however since the collective network is

used only once within each broadcast operation, unlike

an allgather operation where each node does a broadcast

on the same network. Thus, there is no congestion. These

results are not shown in this paper.

B. Cartesian Communication

In this section we measure the network congestion

behavior of BG/P for Cartesian communication patterns.

Specifically, the application logically lays out all the

processes in the system on an N-dimensional grid and

communicates with processes only in one of the dimen-

sions at a time. For example, in a two dimensional grid,

a process communicates only with the other processes

in its row or its column.
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Fig. 6. Cartesian Communication (64 KB Message Size):
MPI_Alltoall

Figure 6 shows the network congestion behavior for a 3D

Cartesian grid where each process communicates with

other processes on a 2D plane (which is a subset of

the processes in the system). As shown in the figure,

however the network congestion behavior for this case

is not very different from that of global communication,

as illustrated in Figure 4.

To understand this behavior, we first need to look at

the correspondence between the physical topology of the

processes and the logical Cartesian grid that the appli-

cation forms by using a call to MPI_Dims_create.

As shown in Table I, the processes in the system are

laid out across four physical dimensions—three of these

(X, Y, Z) correspond to the 3D torus, and the fourth (T)

is the cores on each node (so it can go to a maximum

of 4). The logical dimensions, on the other hand, are as

returned by MPI_Dims_create.
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TABLE I
Summary of partition shapes

Processes Nodes Physical Dimensions (XYZT) Logical Dimensions (XYZ)

2048 512 8×8×8×4 32×8×8
4096 1024 8×8×16×4 64×8×8
8192 2048 8×8×32×4 128×8×8
16384 4096 8×16×32×4 128×16×8
32768 8192 8×32×32×4 128×32×8

With this layout, a 2D plane in the logical 3D process

grid would correspond to a large number of nodes in the

system. For example, consider the 2048-process case;

here, a logical 2D plane using X and Y dimensions

would have 32×8 (256) processes. Since the physical

topology has processes laid out as 8×8×8×4, however

these groups of 256 processes would correspond to

segments of size 8×8×4 in the physical topology. Thus,

each core on a node (T dimension) would belong to a

different logical 2D plane, causing traffic in one logical

2D plane to interfere with the traffic in the other logical

2D planes.

This mismatch between the logical process layout and

the physical layout results in traffic interference and net-

work congestion, even though each process is “logically”

communicating within its clique of processes.

C. Nearest-Neighbor Communication

In this section we study the network congestion behavior

when the application has a nearest-neighbor communica-

tion pattern. In such communication, the processes are

laid out as an N-dimensional logical grid (in a same

way as a Cartesian grid), but each process communicates

only with its neighbors in each dimension (unlike a

Cartesian grid where a process communicates with all

other processes in each dimension).

Such communication is typically done by using one of

two methods. In the first method, each process does

MPI_Alltoallv but specifies a zero data count to

all processes other than its neighbors (for example, the

PETSc [7] numerical library has an option to perform

this kind of communication). In the second method, each

process manually performs point-to-point communica-

tion with its logical neighbors.

Figures 7 and 8 show the performance of both methods

for 2D and 3D logical process grids. As expected,

we notice no significant difference between the two

methods. For 2D process grids in both cases, how-

ever, we notice that there is typically no significant

congestion, except for 8192 processes. For 3D process

grids, however the congestion is significantly higher.

This is because, as described in Section IV-B, there is no

tight correspondence between the physical topology and

the logical topology, especially for higher- dimensional

process grids. Thus, the “nearest neighbors” for a process

in a “logical” process grid can be anywhere in the

physical layout, leading to significant requirements on

the network bisectional bandwidth even in this case.

V. Related Work

Previous work has been done on understanding the

communication and non-communication overheads (in

the context of MPI) on various architectures [13], [14],

[15], [16], [17], [18]. However, none of this work looks

at the network saturation behavior that is becoming

increasingly important with system size, which is the

focus of this paper.

Recent work has also addressed the issue of recently to

understand whether MPI would scale to such massively

large systems or whether an alternative programming

model is needed. This includes work in extending MPI it-

self [19] as well as other models including UPC [20], Co-

Array Fortran [21], Global Arrays [22], OpenMP [23]

and hybrid programming models (MPI + OpenMP [24],

MPI + UPC). While this paper utilizes MPI for measur-

ing the network congestion behavior, most of the insights

are independent of MPI and do give a general indication

of potential pitfalls other models might run into as well.

VI. Conclusions and Future Work

In this paper, we performed a detailed analysis of the

congestion behavior on the IBM Blue Gene/P system,

in order to understand the impact of increasing system

scales on different application communication patterns.

We studied various application communication kernels,

including global communication between all processes

and clique-based communication mechanisms such as

Cartesian communication and logical nearest-neighbor

communication with varying number of dimensions

and different communication patterns. Our experiments,

which scale from small systems to 8 racks (32,768 cores)
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Fig. 7. Nearest Neighbor Communication: MPI_Alltoallv: (a) 2D Process Grid; (b) 3D Process Grid

 1

 32

 1024

 32768

 1.04858e+06

 3.35544e+07

 2048  4096  8192  16384

N
o
 T

o
k
en

s

Number of Processes

Point to Point: 2D Nearest Neighbor (Message Size: 64k)

NO_TOKENS
 1

 32

 1024

 32768

 1.04858e+06

 3.35544e+07

 1.07374e+09

 2048  4096  8192  16384

N
o
 T

o
k
en

s

Number of Processes

Point to Point: 3D Nearest Neighbor (Message Size: 64k)

NO_TOKENS

Fig. 8. Nearest-Neighbor Communication: Point-to-Point: (a) 2D Process Grid; (b) 3D Process Grid

of BG/P, provide insight into the network communication

characteristics of the system.

Different process mappings have different network con-

gestion behavior resulting in different performance. As

future work, we plan to investigate the magnitude of this

impact, and ways in which the best mapping can be pre-

decided.
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